Classifiers

CS/DSA 5970: Machine Learning Practice
Classifiers

Given some input, which of several categories does this situation belong?

• Number of categories (classes) is finite
• Used in many types of problems:
 – Is the input image an example of a cat, dog, horse?
 – Is this loan a good risk?
 – Is the tumor malignant or benign?
 – Is that a stop sign or a speed limit sign? (or others)
Classifier Formulation

• In the general case, input data can be numerical or categorical
• For our first set of examples, we will assume numerical
 – And: categorical can be transformed into numerical using One-Hot-Encoding
• We will also assume two classes for now
Classifier Formulation

• With N-dimensional numerical data, training samples are labeled points (corresponding to the classes)

• Task: identify a N-1 dimensional surface that separates the points in a way that respects the labels

• When N=2, the surface becomes a curve
 – And: the simplest (interesting) curve is a line
Drawing: linear decision boundary
Measuring Classifier Performance

One straw-man possibility for measuring the performance of a specific classifier: count the number of training examples that are labeled incorrectly by the current parameters
Drawing: measuring performance
Measuring Classifier Performance

One straw-man possibility for measuring the performance of a specific classifier: count the number of training examples that are labeled incorrectly by the current parameters

• Many solutions look the same by this metric
• For a given metric, it is not clear how to change the parameters so we can improve the classifier
A First Classifier Learning Algorithm

• Randomly choose parameters
• Measure error
• While error is too large:
 – Make small random choices to the parameters
 – If the error does not become larger, then keep the new parameters
• Done
Drawing: randomized learning algorithm
A First Classifier Learning Algorithm

This is easy to implement, but:

• We could go many random steps before improving performance

• We will randomly choose a solution that minimizes cost
 – But, not all of these solutions are really the same
Drawing: many equivalent solutions
Logistic Regression

CS/DSA 5970: Machine Learning Practice
Logistic Regression

Motivation

• Want to have a smooth relationship between parameters and the cost
 – I.E., we want the cost function to be differentiable with respect to the parameters

• Want to acknowledge that examples near the dividing line are still not really acceptable
 – Instead, we want all samples far away from the dividing line
Drawing: decision function as a distance function
Logistic Regression

Approach: add a non-linearity onto the function

- Dividing curve is still a line
- But, we can use a different cost function that is smooth in the parameter space
Drawing: logistic function, probabilities, cost function, error surface
New Algorithm: Stochastic Gradient Descent

- Randomly choose parameters
- Measure error
- While error is too large:
 - For one or more training samples: compute the derivative of error with respect the parameters
 - Change the parameters in the opposite direction

\[
\frac{\partial E}{\partial w_i}
\]

For each i, compute:

\[
\frac{\partial E}{\partial w_i}
\]

For each i:

\[
w_i \leftarrow w_i - \alpha \frac{\partial E}{\partial w_i}
\]

- Done
New Algorithm: Stochastic Gradient Descent

Notes:

• Stochastic aspect: we only compute the cost with respect to one or a small number of training samples
 – Often this is a sufficient estimate of the gradient

• Computation of the gradient is straight forward

• Depending on the training set, error may always be large
 – Change of algorithm: loop until error stops changing
Classes in the Infant Kinematic Data

CS/DSA 5970: Machine Learning Practice
Example: Infant Kinematic Data

Adding new columns to the infant kinematic data:

• Positions of more than just the wrists
• Assistance action type being given to the infant:
 – 0 = none
 – 1 = forward (power steering) 5 = forward (gesture)
 – 2 = backward 6 = backward
 – 3 = left 7 = left
 – 4 = right 8 = right
Preprocessing

• Compute velocity for all kinematic columns
• Drop all samples with NaNs
First Prediction Problem

Given position and velocity of all points on the body (wrists, shoulders, knees, ankles, toes): predict whether the robot is currently providing assistance

• Can be power steering or gesture-based (action type > 0)
Demo: creating classes
Example: First Behavior Classifier

CS/DSA 5970: Machine Learning Practice
Example: First Behavior Classifier

Stochastic Gradient Descent Classifier
• Provides a variety of linear-based classifiers
• Allows us to select from a range of different loss metrics
 – loss = ‘log’ selects logistic regression
Demo: build model with SGD
Classifier Performance Measures

CS/DSA 5970: Machine Learning Practice
Learned Model

So far:

• Model computes a score for a given input
• If the score is larger than some threshold, then we label it as being a positive example
 – For logistic regression, this default threshold is 0.5
Drawing:

• Contingency table: summarize correct and incorrect sorting
• Can compute other metrics: precision, recall, true positive rate, false positive rate
• Distribution of scores
• Picking a particular threshold means that the samples are sorted in some way
 – For different thresholds, we end up with different sortings & hence different metric values
 – Pierce skill score = difference between TPR and FPR:
 – Kolmogorov-Smirnov distance. Maximizes the PSS
• ROC curve
• Area under the ROC curve
Example: Computing Classifier Metrics

CS/DSA 5970: Machine Learning Practice
Live demo
• CV_M5_L07
Cross-Validation

CS/DSA 5970: Machine Learning Practice
Model Testing

• In large part, we do not care about the performance of a model on the data that it was trained on
 – In particular, a model can over-fit the data
• Really, we care about the performance of the model on independently drawn data
Model Testing

Ideal scenario:
• We draw some data from the world for training
• We then draw (independently) some more data from the world for testing
 – Measure performance with respect to this test data

• But: remember that model building and data sampling are stochastic processes, so performance is a random variable
 – So: we repeat the above procedure many times (at least 20-30)
Ideal Meets Reality

• In many cases, data are really expensive to collect
 – And, if the collection is inexpensive, the labeling is expensive
• Training models with more data is usually a good thing
 (with limits)

… can’t sample an arbitrary amount of data
K-Fold Cross-Validation (an incomplete approach)

Approach

• Cut available data into K-Folds
• Use folds 0, 1, … K-2 to train the model
• Measure performance of the model using fold K-1

• Use folds 1, 2, … K-1 to train the model
• Measure performance of the model using fold 0
• …
K-Fold Cross-Validation

Notes

• We build K different models
 – Different models do use overlapping training data

• The data used for testing a model is never used for training that model

• A data sample is used for testing exactly once
 – So, the K testing performance measures are independent of one another!
K-Fold Cross-Validation

Final note: this is only part of the Cross-Validation story

• In practice, we also want to do selection of model hyper-parameters
 – We should *never* use testing data to make these selections

• In practice, we may want to compare the performance of many different models
 – We have to tread carefully here or we can make serious statistical errors
• CV_M5_L08
Example: Cross-Validation

CS/DSA 5970: Machine Learning Practice
Live demo
• CV_M5_L09
Multi-Class Classification

CS/DSA 5970: Machine Learning Practice
Multi-Class Classification

• A linear decision surface (such as what is used in SGDClassifier) is necessarily binary
• To address multiple classes, we must construct a set of binary classifiers
 – Predictions over this set are combined together to create a single, monolithic prediction for each input
Multi-Class Classification

One-versus-one approach:
- For every pair of classes, create a classifier that distinguishes examples from the two classes
- We assume that the two classifiers randomly assign a label to all other example types (not necessarily a good assumption)
- Need N^2 classifiers
IPAD (continued)
Multi-Class Classification

One-versus-all approach:

• For each class, create a classifier that distinguishes examples from one class and all other classes

• Need N classifiers

• Decision surfaces can be complex, which are hard to model with a linear surface
Multi-Class Classification with the SGDClassifier

- SGDClassifier automatically detects when it is faced with a multi-class situation
- Unless forced, it will choose oneVone or oneVall, depending on the number of classes
• CV_M5_L10
Example: Multi-Class Classification

CS/DSA 5970: Machine Learning Practice
Multi-Class Classification with the SGDClassifier

Example:
• 3 classes: gesture forward, gesture left/right, all others
• Construct model, examine predictions, confusion matrix and class probabilities

Example II:
• Same, but with cross-validation
Multi-Class Classification with the SGDClassifier

Example III:
• RandomForestClassifier
Live demo
Final Notes

This particular classification problem is a challenge:

- Example uses only a small amount of data
- Labeling process leaves a lot to be desired
 - Only labeling movement as positive
 - But, one sample before the positive label will have very similar positions and velocities (and yet be labeled as negative)
 - In practice: we tend to sensor these nearby samples
Final Notes

Statistics

• We haven’t yet addressed formal methods for measuring the performance of our learned model

• One approach: with a Chi-squared test, we can formally ask whether the rows of our table are different from one-another
 – Null hypothesis: the model does not (statistically) generate a different distribution of outputs given the true class of the input

More soon…
• CV_M5_L11
Classifier Summary

CS/DSA 5970: Machine Learning Practice
Classifiers

SGDClassifier
• Numerical data
• Limited to constructing linear decision surfaces
• Must take extra steps to address multi-class cases
SGDClassifier Parameters

Some key parameters:

• Loss function
• Regularization (L1, L2 or both)
• Maximum number of iterations
• Tolerance
• Learning rate (and is it constant or adaptive)
• Early stopping (using a validation data set)
Classifiers

Looking forward to other types of classifiers:

• Non-linear decision surfaces
• Picking decision surfaces as conservatively as possible
• Allowing the algorithm to choose some training samples to ignore
• Categorical data
Classifier Metrics

- Precision & recall
- True positive rate & true negative rate
- Receiver Operator Characteristic Curve
 - Area under the ROC Curve (AUC)
- Skill scores
 - We looked at Pierce Skill Score (PSS), but there are others that address different properties
Cross-Validation

- Only report performance for data that are not used to select model parameters
- Cross-Validation explicitly does this in situations where data samples are hard to come by

More on this topic later in the semester…