Embedding-Based Methods

CS/DSA 5970: Machine Learning Practice
Non-Linear Manifolds

• As we have seen, manifolds are not generally linear
 – E.g., two features can vary together, but not linearly
• Manifolds can also loop back onto themselves
 – E.g., two features that do not have a one-to-one relationship
Non-Linear Manifolds

- PCA: linear manifolds only
 - Construct a global model of the manifold
- Kernel PCA: can express non-linearities
 - Simple case: representation of the manifold is a global model
 - Kernel trick: captures the model in terms of a weighted sum over the training set samples
- Can also take a sample-based approach in the original space!
Locally Linear Embedding

• Training set in N-dimensional feature space
• Measure distance between each pair of training set samples
 – For each sample, identify the closest neighbors
 – The closest neighbors give us a sense of the shape of the local neighborhood
• Place corresponding points in a new M-dimensional space:
 – Select these points, so that the distances to the neighbors are preserved
Locally Linear Embedding

CS/DSA 5970: Machine Learning Practice
Locally Linear Embedding (LLE)

- Phase 1: Build local models
- Phase 2: Embedded corresponding points into a lower-dimensional space
Phase 1: Build Local Models

• Use Euclidean distance metric to identify the k nearest neighbors for each point
 – Generally, these nearest neighbors define a local manifold
 – The dimensionality of this local neighborhood is at most k-1

• For each point, identify a weighted sum of the neighbors that predicts the location of the point
IPAD_M14_02b

• Algorithm, part 1
Locally Linear Embedding: Embedding

CS/DSA 5970: Machine Learning Practice
LLE: Embedding Phase

• Each X_i has a corresponding Z_i in an M-dimensional space
• Pick the location of the Z_i’s that respect the neighborhood models that we learned in the previous step
 – These are the weights that we have already determined
Locally Linear Embedding: Query

CS/DSA 5970: Machine Learning Practice
Example: Locally Linear Embedding

CS/DSA 5970: Machine Learning Practice
Live demo
Example 2: Locally Linear Embedding

CS/DSA 5970: Machine Learning Practice
Example 2: Locally Linear Embedding

New data set:
• Original space: 3D
• Varying density
 – 1D manifold mixed with 2D manifolds
Live demo
Multidimensional Scaling

CS/DSA 5970: Machine Learning Practice
Euclidean Distance Metric

• Easy to compute
• In many data sets, it is not trivial or appropriate to compare samples in this way:
 – Different features have different units and different scales
 – For some representations, we can’t simply take a difference between two values (e.g., angles)
Color Perception

How well does a human distinguish colors?
• Are two colors different?
• If so, by how much?

Tseghai et al.; researchgate.net
Multidimensional Scaling

Useful for:

• Situations where we want to use different distance metrics
• Situations where we can’t measure the features, but can measure the distances
Multidimensional Scaling

Algorithm outline

• Compute or measure all pair-wise distances between samples
• Embed a set of points into M dimensions that respect these differences
Multidimensional Scaling

Notes

• The MDS cost function is a global metric
• All pair-wise distances must be respected (not just the nearest neighbors)
Example: Multidimensional Scaling

CS/DSA 5970: Machine Learning Practice
Multidimensional Scaling

Both data sets:
- Swiss roll
- Arrow
Geodesic Distance

CS/DSA 5970: Machine Learning Practice
Geodesic Distance

• Euclidean distance: not always meaningful in high-dimensional spaces
• Here, assume that Euclidean distance is only meaningful for short distances
• Use this neighborhood relation to define a weighted graph structure among the k-nearest neighbors
• Geodesic distance between all pairs of points: shortest distance in this graph
ISOmap

CS/DSA 5970: Machine Learning Practice
ISOmap

• Compute geodesic distance for each pair of points in the training set
• Use multi-dimensional scaling to embed corresponding points into a new space
• Advantage over Euclidean distance: points that are somewhat near in Euclidean space, but are far away in geodesic distance are considered far away from one another
Live demo
t-Stochastic Neighbor Embedding

CS/DSA 5970: Machine Learning Practice
t-Stochastic Neighbor Embedding

Similarity metric in the original space:

- For a given sample: the probability of selecting one of the other samples from the training set to be its neighbor
- Gaussian distribution: highest similarity when the two samples are the same & drops off as they move apart

Embedded space:

- Select Zi’s so that the probability distributions are the same across the two spaces
t-SNE

- Use of the probability distribution emphasizes nearest points and treats all far points the same
- PDs really emphasize clusters of points
- Perplexity hyper-parameter:
 - Higher values: include more neighbors in the computation
 - Gives us smoother functions
- No good way to query after the fact:
 - Hence, this is often used for visualization of the given data set
Example: T-SNE

CS/DSA 5970: Machine Learning Practice
Live demo
Dimensionality Reduction: Final Thoughts

CS/DSA 5970: Machine Learning Practice
Dimensionality Reduction Methods

- Global methods: PCA and (sort of) Kernel PCA
- Local models: LLE, MDS, ISOMap, tSNE
 - And, with the kernel trick, Kernel PCA
Embedding Methods

• PCA: first thing to try
• LLE:
 – Capture local manifold, but ignore larger structure
• MDS:
 – Allows us to use any distance metric that we want
 – We don’t even need to have a feature-based representation of the samples
Embedding Methods

• ISOmap:
 – Very curved manifolds, especially those that loop back onto themselves

• t-SNE:
 – Looking for pockets (clusters) of samples
 – Most often used for visualization purposes
Dimensionality Reduction Uses

• Visualization: give domain experts and data analysis practitioners a better understanding of the geometry of the feature space

• Preprocessing for other methods
 – By unwarping curved manifolds, linear models potentially become viable again
 – By reducing dimensionality, we have less of an opportunity to overfit the data