E was formulated a little differently in the code than what we had been doing on the board:

\[
E = \frac{1}{m} \sum_{i=0}^{m-1} E_p = \frac{1}{m} \sum_{i=0}^{m-1} (\hat{y}_p - y_p)^2
\]

\[
\frac{dE}{dw_i} = \frac{1}{m} \sum_{p} \frac{d}{dw_i} (\hat{y}_p - y_p)^2
\]

\[
= \frac{1}{m} \sum_{p} 2(\hat{y}_p - y_p) \frac{d}{dw_i} \hat{y}_p
\]

\[
= \frac{2}{m} \sum_{p} (\hat{y}_p - y_p) X_{i,p}
\]

\[
= \frac{2}{m} \sum_{p} error_p \cdot X_{i,p}
\]

In the code, gradients is a vector:

\[
\text{gradients} = \frac{dE}{dW} = \frac{2}{m} \begin{bmatrix} \sum_{p} error_p \cdot x_{0,p} \\ \sum_{p} error_p \cdot x_{1,p} \\ \vdots \\ \sum_{p} error_p \cdot x_{n-1,p} \end{bmatrix}
\]
Part 1: add a bias term to our model:

\[\hat{y}_p = (\sum x_{ip} w_i) + b \]

a) add a 'b' variable
b) make any changes to the forward model that are necessary
c) make any changes to 'gradients' that are necessary
d) compute a gradient for b
e) add a new training operation for b
f) run this training op in your learning loop.

Part 2: add regularization terms

\[E = \frac{1}{m} \sum_{p=0}^{m-1} E_p + \gamma \left(\sum_{i=0}^{n-1} w_i^2 + b^2 \right) \]

a) modify the gradients computation
b) modify the gradients bias computation
e) Select \(\gamma = 2 \)