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Abstract— J. J. Gibson suggested that objects in our environ-
ment can be represented by an agent in terms of the types of
actions that the agent may perform on or with the object. This
affordance representation allows the agent to make a connection
between the perception of key properties of an object and these
actions. In this paper, we explore the automatic construction of
visual representations that are associated with components of
objects that afford certain types of grasping actions. A training
data set of images is labeled with regions corresponding to
locations at which certain grasp types could be applied to
the object. A classifier is trained to predict whether particular
image pixels correspond to these grasp regions. Each pixel that
is classified as a positive example of a grasp region votes for its
surrounding image region. If there exists a pixel with a large
enough number of votes, then the image is considered to afford
the grasp and the location of the pixel is identified as the best
grasp point. Experimental results show that the approach is
capable of identifying the occurrence of both handle-type and
ball-type grasp options in images containing novel objects.

I. INTRODUCTION

A robot faced with manipulating objects in the environ-
ment must be able to use visual information to identify the
set of grasping and manipulation actions that are afforded
by the objects contained therein [4]. This set of options not
only helps the robot to plan the next sequence of actions to
execute, but once the next action is selected, this represen-
tation can provide detailed information about the necessary
shape and pose of the hand, and the forces to be applied.
While information from haptic feedback will play a key role
in this process [2], [9], the initial choices will often be made
based on visual information only. What visual representations
support the recognition of grasping actions and how can an
agent automatically acquire these representations eitherby
direct interaction with the environment or by observation of
the actions of other agents?

Piater and Grupen [8] use a representation based on
constellations of 2D appearance features to choose a par-
ticular grasp and to position the hand. The constellations of
edge and texture features are learned as the robot haptically
explores and grasps objects. Particular constellations that are
predictive of successful grasps are cached for use in later
recognition problems.

Saxena et al. [10] automatically acquire appearance-based
visual models that can be used to label image regions as gras-
pable or not using a precision type grasp. Given a large set
of example images with specific graspable regions labeled,
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they employ a supervised learning approach to construct the
pixel classifier. Given a labeling of multiple images of the
same scene, 3D grasp locations are then estimated. Their
experiments on a physical robot show promising results that
novel objects can often be grasped even in cluttered scenes
without pre-defined 3D models of the objects.

Following this idea, a possible next step is to explicitly
identify locations in an image that afford specific types of
grasps. These grasp types are defined, in part, by the hand
shape and by the set of forces to be applied to the object.
For example, a mug may be grasped by its handle (e.g.,
for the purposes of transporting or drinking from) or by its
rim (e.g., for transporting or throwing). In this paper, we
explore the problem of learning such a set of visual models
based on a training set with a small number of objects and
with a very coarse labeling of the regions in which specific
grasps may be used. Our approach is to first extract high-
dimensional feature vectors that describe the local shape and
texture around points of interest. In particular, we use the
scale invariant feature transform (SIFT) [5], which yields
discriminative features that are robust to orientation, scale
and lighting changes. We then use a classifier to identify
those feature vectors that reliably make predictions about
the grasp types and locations in the image. If a sufficient
number of positively classified feature vectors is found within
some part of an novel image, it is considered to afford that
particular grasp type at the region in which the positive
features are found. We demonstrate that our approach is
capable of extracting visual representations that captureboth
handle-type grasps and ball-type grasps that are applied to
cylindrical objects.

II. METHODS

Our goal is to visually identify the types of grasps that are
applicable to a given object and, for each grasp, identify the
approximate location at which grasp contacts are likely to
occur. We would like for the learned visual representations
to be generalizable to novel objects. Hence, the visual
representations must be able to capture aspects of the object’s
shape that are relevant to the grasp. Because we would
not like to commita priori to particular, high-level visual
primitives, we choose instead to make use of a general set
of multi-scale, rotation invariant visual features.SIFT [5]
features are capable of identifying fine details, including
textures. This type of visual feature is considered to be very
discriminative [6] and is widely used in object recognition
related tasks. The SIFT approach identifies certain points
in the image as being salient. This allows a recognition
algorithm to focus on a small subset of the image pixels.



When applied tomaximally stable extremal regions (MSERs),
SIFT features capture aspects of the gross shape of an object
or its parts [3].

For each type of grasp to be recognized, each training data
set image is labeled with one or moregrasp regionsat which
the corresponding grasp could be applied. We first train
a model that classifies SIFT feature vectors as to whether
they are expected to fall within this grasp region. For a
novel image, the classifier labels each candidate feature as
a positive or negative example of the grasp region. Positive
features “vote” for the region of the image in which they
are found. SIFT features derived from the original image
and from a MSER capture fundamentally different image
properties. If there exists a pixel with a large enough number
of votes from both types of features, then the image is
considered to afford the grasp and the location of the pixel
is identified as the best grasp point.

A. Visual Features

In this section, we briefly outline the SIFT and MSER-
SIFT1 approaches to describing image appearance.

1) SIFT: Keypoint detection. The goal for keypoint
detection is to detect the locations in a given image that are
robustly identifiable in other images of similar perspectives
of the same or similar objects. Specifically, SIFT aims to
identify keypoints that are repeatable when scaling and in-
image rotation exist. First, scale space images are generated
from the original image. Then, the Difference of Gaussian
(DOG) responses are computed from the two nearby scales
in this scale space. These DOGs respond highest to areas
of high contrast (dark surrounded by bright, or vice-versa).
The most stable locations are identified by the spatial and
scale extrema in the DOG images. These stable locations are
termed “keypoints” by Lowe [5]. The gradient (orientation)
of a pixel in an image is defined as the direction in which
the image intensity changes most quickly. A canonical ori-
entation is assigned to each keypoint by using the dominant
orientation of pixels within a surrounding region. In orderto
achieve rotation invariance, the orientation of the surrounding
features are relativized to this canonical orientation.

SIFT descriptors. Each keypoint corresponds to a 2D
location in a given image, which itself can be considered
as defining the origin of a 2D coordinate frame, whose
orientation and scale are determined by the canonical ori-
entation and scale of the keypoint. The keypoint descriptor
is a vector that represents the appearance of this patch. First,
a patch is divided into subregions, and for each subregion,
a histogram of local orientations is computed. Each bin of
this histogram counts the number of pixels with gradients
in a particular range of orientations. In practice, a shift by
an individual pixel in either direction does not substantially
change the orientation histograms. This property makes SIFT
less sensitive to variations in registration of the patch location
during the matching process. Finally, the values of all binsfor

1Informally, we use MSER-SIFT or MSER feature to denote the shape
descriptor computed on a MSER using SIFT.

each histogram are appended together into a single feature
vector. Lowe shows experimentally that a descriptor of length
128 gives the best performance for feature matching. This
corresponds to4×4 patches and 8 bins in each patch. In order
to reduce the effect of illumination changes, the descriptor
vector is normalized to unit length.

2) MSER-SIFT: This approach uses an affine invariant
shape descriptor for MSERs. A set of binary images can
be generated by applying different thresholds to the original
image. The set of extremal regions are the connected black or
white regions in these binary images, and MSERs correspond
to the regions that are stable across a set of thresholds. These
MSERs are used to define SIFT keypoints. Instead of using
grey-scale images to calculate feature vectors as in SIFT,
MSER-SIFT uses the binary MSER itself to calculate the
SIFT descriptors. Since MSERs usually capture the shape
information of an image patch, the SIFT features calculated
on these regions depend more on the shape of the patch rather
than its texture. The detailed implementation is describedby
Forsśen and Lowe [3].

B. Feature Vector Classification

The next problem is to classify a feature vector as to
whether it comes from a region corresponding to a partic-
ular grasp type. We use a support vector machine (SVM)
classifier [11] to solve this problem. Given two sets of n-
dimensional vectors (n = 128 in our case), a SVM classifier
attempts to construct a hyperplane that optimally separates
the positive examples from the negative ones by giving the
smallest classification error. In practice, we adjust the relative
weighting between the positive and negative classes based on
the number of samples in each class. By using a polynomial
kernel of degree k (larger than 1), the SVM classifier will
search for a hyperplane in a higher dimensional space in
which the feature vector describes all possible combinations
of k-degree products of the original 128 feature elements.
While the discrimination power is dramatically increased,
the computational complexity is not significantly increased
by using akernel trick [11], which allows the computations
to remain in the original 128-dimensional space.

C. Identifying the Grasp Region

In practice, individual positive keypoint feature vectorscan
be located in many locations across an image containing
an object. However, a larger number of positive features
are typically found in image areas that contain the target
concept. We combine evidence from all observed features
in an image by using a non-parametric particle based vot-
ing approach [12]. Features that are recognized as positive
vote for surrounding pixels using a Gaussian-shaped voting
function. The width of this function is proportional to the
feature’s scale. Also, the overall strength of the vote of an
individual feature is scaled by the degree to which it matches
the expected scale.

More formally, we define the voting function for a partic-



ular grasp type at locationx in an image as:

V (x) =

Np∑

i=1

Wi(x), (1)

whereNp is the total number of positive features andWi(x)
is a Gaussian-shaped weighting function for each positive
featurei. We define the weighting function for featurei as:

Wi(x) = αie
−

(x−xi)
T (x−xi)

2σ2
i , (2)

where x denotes an arbitrary location in the image,xi

denotes the location of positive featurei, σi determines the
width and αi determines the magnitude. Specifically, we
define:

σ2

i = βs2

i , (3)

wheresi denotes the scale of featurei. For SIFT features, we
directly use the scale of the image in scale space; for MSER-
SIFT features, we use the mean of the major and minor axes
of the bounding ellipse.β = 0.5 is an empirically selected
constant. The magnitude of (2) is determined byαi, whose
value is highest if featurei has a scale that is expected given
the training set:

αi = e
−

(si−s̄i)
2

2σ̂2
i , (4)

where σ̂i and s̄i are the standard deviation and the mean
of the k positive features in the training set that have the
smallest Euclidean distance to featurei.

D. Combining SIFT and MSER-SIFT Features

In practice, SIFT features are very specific to the local
appearance of a region. As a consequence, they can often be
“distracted” by surface textures. MSER-SIFT features allow
our algorithm to focus more on the shape of objects rather
than textures. However, many fewer MSER-SIFT features
are typically found than SIFT features. Our approach is
to combine information from both sources of evidence.
Specifically, we combine the values of the particle voting
functions of SIFT and MSER-SIFT features by a pixel-wise
multiplication:

Vboth(x) = VSIFT(x) × VMSER(x). (5)

E. Identifying a Grasp

We consider an image as affording a particular grasp
if some pixel accumulates enough votes. Specifically, if
maxx V∗(x) > θ∗, then we assume that a grasp has been
identified at locationx, where ∗ ∈ {SIFT, MSER, both}
and θ∗ is a threshold. We select the threshold that gives
the Kolmogorov-Smirnoff distance between the true positive
rate (TPR = TP/(TP+FN); TP = true positives; FN = false
negatives) and false positive rate (FPR = FP/(FP+TN); FP =
false positives; TN = true negatives) of the training set [13].

Fig. 1. The set of objects used in our experiments. The rectangular region(s)
in each image corresponds to the grasp region, which is manually selected.

III. EXPERIMENTAL RESULTS

For the purposes of examining the behavior of our algo-
rithm, we choose to focus on two grasps: a ball grasp from
the top of circular-shaped objects and a handle grasp for
mug-shaped objects. Based on this, we selected 18 objects
from the COIL-100 database [7], which includes all 9 mugs,
7 can-shaped objects (including all the soda cans) and 2
other objects (a ship and a car), as shown in Fig. 1. The
rectangular region(s) shown in each image corresponds to
thegrasp regionthat is manually selected by the author. This
grasp region is used in the training set for the purposes of
labeling features as being positive or negative examples ofa
grasp region. In addition, this region is used in the evaluation
phase of our experiments. For each object, we use all 72
images which correspond to all viewing angles surrounding
the object with 5 degree increments.

We use VLFeat [14] to calculate SIFT features and MSER
keypoint locations. We use Forssén and Lowe’s algorithm [3]
to calculate MSER-SIFT descriptors. Given this relatively
small set of objects, we use leave-one-object-out cross-
validation to evaluate the performance of our algorithm. The
features within a grasp region for a particular grasp are
labeled as positive, otherwise they are labeled as negative.

A. Performance Effect of Feature Type

For a selected testing object, we use the other 17 objects
to construct a model for each of the two grasp types. For
each grasp type, we train two separate classifiers: one for
SIFT and the other for MSER-SIFT features. We use a c-
svc (support vector classifier) with a polynomial kernel of
degree 10 provided by the LIBSVM Matlab toolbox [1]. We
choose the relative cost weighting of the two classes to be
inversely proportional to the number of features in each class
as observed in the training set.

Examples of SIFT features identified in a test image
are shown in Fig. 2(a). The tail of each arrow denotes
the center (keypoint) and the length denotes the scale of
each SIFT feature. Examples of MSER-SIFT features that
are recognized as positive are shown in Fig. 2(c). Each
ellipse denotes a MSER-SIFT feature, which is scaled based
on the actual feature scale. The particle voting functions
calculated from the SIFT and MSER features are shown in
3D in Fig. 2(b) and Fig. 2(d). The origin of these figures



(a) Positive SIFT features (b) The particle voting functionVSIFT

(c) Positive MSER features (d) The particle voting functionVMSER

(e) The particle voting functionVboth

Fig. 2. Predict grasp type and location in an image containinga mug. The
origin of the 3D coordinate system corresponds to the lower left corner of
the test image.

corresponds to the lower left corner of the test image. We can
see that the locations of the peaks correspond to the locations
of the positively classified keypoints. Note that the two small
MSER features in Fig. 2(c) are assigned nearly zero height
in Fig. 2(d). This is due to the fact that the scales of these
two features are very different from those of the most similar
features in the training set. The pixel-wise multiplication of
these two particle voting functions is shown in Fig. 2(e).
By using this “and” operation, the MSER-SIFT votes filter
out the extraneous SIFT votes and the SIFT votes refine the
locations that are supported by the MSER-SIFT votes. We
select the peak in Fig. 2(e) as the predicted grasp location
as long as it is higher than the threshold,θboth.

We compare the grasp prediction performance of three
algorithms: SIFT feature only, MSER feature only and the
combination of both features. SIFT-only and MSER-only
approaches only use votes of a single type of feature (VSIFT or
VMSER), while the combined approach uses the product of the
two (Vboth). We use two criteria for performance evaluation.
First, we evaluate whether a certain type of grasp can be

identified correctly for a given image (a yes/no criterion).We
report the performance of a particular algorithm on a specific
grasp using a single contingency table and summarize the
performance using the kappa statistic:

κ =
observed agreement− chance agreement

1 − chance agreement
. (6)

The kappa statistic measures performance of the grasp recog-
nition models relative to the best strategy possible without
any information.κ ≤ 0 is interpreted as performance being
no better than a fixed strategy;κ = 1 is interpreted as
having perfect performance. When a grasp type is correctly
identified (a true positive), the next question is whether
the predicted grasp location is within the correct region (a
precision criterion). We calculate the percentage of correct
locations (PCL) for the true positive images only.

The contingency tables of the SIFT-only approach, MSER-
only approach and the combined approach for the handle
grasp are shown in Tables I-III. For the handle grasp, the
SIFT-only feature approach performs poorly at recognizing
negative examples (many false positives). Because SIFT
features are sensitive to fine details of texture, it is not
uncommon for a positive SIFT feature to be observed in a
negative image. The MSER-only feature approach correctly
recognizes many negative cases (true negatives). However,
the number of false negatives is also high. This is because
that MSER features depend more on the gross shape of an
object. The positive images in our testing set usually contain
a single large scale MSER feature enclosing the handle (such
as the one observed in Fig. 2(c)), which is rarely observed in
the negative images without handles. The combined approach
takes advantages of both features and works even better on
the negative examples, since only locations voted for by both
features are identified as grasp points. However, this comes
at a cost of a larger number of false negatives than either of
the other two approaches. By comparing the performance of
these three approaches, we can see that the combined feature
approach has the highestκ. Note that the combined feature
approach has the lowest number of true positives. However,
of the images that it does correctly label as positive, it also
correctly identifies the grasp region in the largest proportion
as compared with the other approaches. This is seen in the
higher PCL for the combined approach.

For the top grasp, unlike the handle grasp, there are only
two negative objects: the car and the ship. The labels for
all testing images are positive except for the images that
correspond to these two objects. The corresponding results
are shown in Tables IV-VI. The SIFT-only feature approach
simply identifies all images as positive and performs equally
to the chance agreement (κ = 0). This is due to the
ambiguity of textures and a low threshold. However, the
PCL of SIFT-only approach is high. This is because that
the SIFT features are very discriminative and the positive
features usually aggregate in the correct grasp regions. In
contrast, MSER-only feature approach correctly recognizes
most of the negative images (114/144). This is because the
gross shapes of the car and the ship are very different from



TABLE I

HANDLE GRASP PREDICTION RESULT: SIFT

κ=0.0286 Actual
PCL=63.89% P N Total

Predicted
P 529 738 1267
N 1 28 29

Total 530 766 1296

TABLE II

HANDLE GRASP PREDICTION RESULT: MSER

κ=0.3231 Actual
PCL=66.14% P N Total

Predicted
P 378 289 667
N 152 477 629

Total 530 766 1296

TABLE III

HANDLE GRASP PREDICTION RESULT: BOTH

κ=0.4975 Actual
PCL=96.06% P N Total

Predicted
P 279 45 324
N 251 721 972

Total 530 766 1296

the positive objects where a top grasp can be applied. The
combined feature approach gives the highestκ and PCL. In
this particular case, an algorithm that guesses all images as
positive will perform well. Hence, there is very little room
for improvement. This explains in part whykappa for all
three approaches is low.

B. Performance Effect of Training Set Size

In the second set of experiments, we are interested in the
role that training set size plays in algorithm performance.
We examine this issue by varying the number of mugs in the
training set while keeping the 9 non-mug objects constant.
First, we fix the order of the 9 mugs randomly. Then, for
each of the 9 mugs we selected, we add between 1 and 8
mugs to the training set according to this order. This gives
a training set size of 10 to 17. The 9th mug is used for
testing. For the handle grasp, we expect the performance to
increase substantially as mugs are added to the training set,
since there are no positive examples in the constant part of
the training set. However, for the top grasp, we only expect
a small performance increase with a relatively high starting
point, since most of the objects in the constant training set
are positive examples (the can-shaped objects) of the top ball
grasp.

For the handle grasp, the handle of a mug is visible in 13
out of the 72 aspects on average; for the top grasp, all mug
images are positive examples since the top of a mug can
always be observed. Because the chance agreement is very
high in this case, the kappa statistic is degenerate. Therefore,
we report the true positive rate (TPR) instead.

Fig. 3 shows the mean TPRs of 9 mugs as the number
of mugs in the training set increases. In this figure, we
can see that both handle grasp and top grasp performance
improve with increasing training set size. The large standard

TABLE IV

TOP GRASP PREDICTION RESULT: SIFT

κ=0 Actual
PCL=82.99% P N Total

Predicted
P 1152 144 1296
N 0 0 0

Total 1152 144 1296

TABLE V

TOP GRASP PREDICTION RESULT: MSER

κ=0.1171 Actual
PCL=72.30% P N Total

Predicted
P 592 30 622
N 560 114 674

Total 1152 144 1296

TABLE VI

TOP GRASP PREDICTION RESULT: BOTH

κ=0.2259 Actual
PCL=90.63% P N Total

Predicted
P 811 39 850
N 341 105 446

Total 1152 144 1296

deviations are due to the two mugs with low image qualities
in our data set (the second and the fourth mugs in the last row
in Fig. 1). Also, top grasps overall have higher TPRs than
handle grasps. This is because that there are more positive
examples (the can-shaped objects) with top grasps in the
training set, which helps our algorithm to learn a better
model. For both the handle grasp and the top grasp, there
is a significant difference in TPR between 2 mugs and 8
mugs in the training set (p < 10−3 for the handle grasp;
p < 0.03 for the top grasp, according to a paired bootstrap
test).

Likewise, the PCLs are shown in Fig. 4. Note that the
first point of the blue curve is a mean of only 5 trials, given
that grasps are only successfully identified for 5 of the 9
test mugs. All the other points are means of 9 mugs. In
this figure, we can see that handle grasps have much smaller
standard deviations and overall higher values than top grasps.
This is due to the fact that visual features corresponding to
handle grasps are usually more distinctive and reliable than
top grasps. Both curves show little variation as a function
of training set size. For both the handle grasp and the top
grasp, there is no significant difference between 2 mugs and
8 mugs in the training set (p < 0.3 for the handle grasp;
p < 0.8 for the top grasp, according to a paired bootstrap
test).

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we propose an approach that visually
identifies grasp types and locations from images of novel
objects. For a given image, visual features are classified
based on whether they correspond to a particular grasp
type. This classifier is trained using images with manually
labeled grasp regions. In a novel image, the evidence from
multiple identified features is combined using a particle
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Fig. 3. The mean and standard deviation (shown as whiskers) oftrue
positive rates as the number of mugs in the training set increases. Blue:
handle grasp; red: top grasp.

voting function. The peak location in an image is selected
as the grasp location if its value exceeds a threshold.

Our experiments show that the learned model can be
generalized to novel objects with similar shapes as the ones
in the training set. The combined approach that uses both
SIFT (texture-sensitive) and MSER-SIFT (shape-sensitive)
features improves the performance substantially. Increasing
the number of positive examples in the training set increases
the true positive rate for grasp identification. However, as
long as a certain grasp type is correctly identified, the accu-
racy of the location tends to remain the same. This reflects
the overall performance of our particle voting function, that
is, the peaks usually fall within the correct grasp regions.

Our algorithm shows the potential to grasp novel objects,
as long as these objects share similar components as the ones
in the training set. For several cases, however, our algorithm
exhibited poor performance in properly classifying certain
types of images. This effect is due in part to a poor choice
of threshold (a low value) for the voting function. We believe
that this can be corrected in part by introducing a separate
validation data set with which this threshold can be selected
(as opposed to using the training data set). However, an
increase in this threshold will yield a higher false positive
rate in trade for a lower false negative rate. In part, we believe
that this can be compensated for by using a larger number
of objects for training and validation. In addition, we expect
that a robot that fails to properly identify a grasp option from
a single image will have other opportunities as more images
are available in the on-line context (e.g., through stereo pairs
or images taken in time).

As future work, we plan to generalize our experiment in
several ways. First, we plan to use images directly taken
from real scenes, which will include cluttering and occlusion.
Second, we currently manually label the grasp regions in a
given image. This process may become cumbersome when
the number of objects in the data set increases. We plan to
automatically label grasp regions by observing how human
teachers place contacts on objects.
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Fig. 4. The mean and standard deviation (shown as whiskers) ofthe
percentage of correct locations as the number of mugs in the training set
increases. Blue: handle grasp; red: top grasp.
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