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Abstract—J. J. Gibson suggested that objects in our environ-  they employ a supervised learning approach to construct the
ment can be represented by an agent in terms of the types of pixel classifier. Given a labeling of multiple images of the
actions that the agent may perform on or with the object. This same scene, 3D grasp locations are then estimated. Their
affordance representation allows the agent to make a connection . t ’ hvsical robot sh . Its that
between the perception of key properties of an object and these experlmgn S on a physical robot show promlsmg resufts tha
actions. In this paper, we explore the automatic construction of NOVel objects can often be grasped even in cluttered scenes
visual representations that are associated with components of without pre-defined 3D models of the objects.
objects that afford certain types of grasping actions. A training Following this idea, a possible next step is to explicitly
data set of images is labeled with regions corresponding 10 jyaniify |ocations in an image that afford specific types of
IocatloUs at WhICh. certain grasp types could be app]led to rasps. These arasp tvoes are defined. in part. by the hand
the object. A classifier is trained to predict whether particular grasps. grasp typ ’ .p » DYy .
image pixels correspond to these grasp regions. Each pixel that Shape and by the set of forces to be applied to the object.
is classified as a positive example of a grasp region votes for its For example, a mug may be grasped by its handle (e.g.,
surrounding image region. If there exists a pixel with a large  for the purposes of transporting or drinking from) or by its
enough number of votes, then the image is considered to afford rim (e.g., for transporting or throwing). In this paper, we
the grasp and the location of the pixel is identified as the best | ) i,‘ bl fl . h ) f visual ’ del
grasp point. Experimental results show that the approach is explore the pro_ .em 0 eqrnlng such a set o VISU&I. modaels
capable of identifying the occurrence of both handle-type and based on a training set with a small number of objects and
ball-type grasp options in images containing novel objects. with a very coarse labeling of the regions in which specific

| INTRODUCTION grasps may be used. Our approach is to first extract high-
" i i ) ) _dimensional feature vectors that describe the local shage a

A robot faced with manipulating objects in the environ-eyiyre around points of interest. In particular, we use the
ment must be able to use visual information to identify thgcaje invariant feature transform (SIFT) [5], which yields
set of grasping and manipulation actions that are affordeglscriminative features that are robust to orientatiorglesc
by the objects contained therein [4]. This set of options nejnq ighting changes. We then use a classifier to identify
only helps the robot to plan the next sequence of actions {gose feature vectors that reliably make predictions about
execute, but once the next action is selected, this represgRe grasp types and locations in the image. If a sufficient
tation can provide detailed information about the necgssapymper of positively classified feature vectors is founchiit
shape and pose of the hand, and the forces to be appligme part of an novel image, it is considered to afford that
While information from haptic feedback will play a key role particular grasp type at the region in which the positive
in this process [2], [9], the initial choices will often be 0&  featyres are found. We demonstrate that our approach is
based on visual information only. What visual representstio capable of extracting visual representations that cayitatie

support the reqognition of grasping actions an(_j how can 3hindle-type grasps and ball-type grasps that are applied to
agent automatically acquire these representations efijer cylindrical objects.

direct interaction with the environment or by observatidn o
the actions of other agents? II. METHODS

Piater and Grupen [8] use a representation based onpyy goal is to visually identify the types of grasps that are
qonstellatlons of 2D appearance features to choosg a Papplicable to a given object and, for each grasp, identiéy th
ticular grasp and to position the hand. The constellatlo‘n_s @pproximate location at which grasp contacts are likely to
edge and texture features are learned as the robot hapticallecyr. \We would like for the learned visual representations
explores and grasps objects. Particular constellatioalsafe 15 pe generalizable to novel objects. Hence, the visual
predictive of successful grasps are cached for use in latfpresentations must be able to capture aspects of thetsbjec

recognition problems. _ ) shape that are relevant to the grasp. Because we would
Saxena et al. [10] automatically acquire appearance-basggh ike to commita priori to particular, high-level visual

visual models that can be used to label image regions as 9rggimitives, we choose instead to make use of a general set
pable or not using a precision type grasp. Given a large sgf muylti-scale, rotation invariant visual featureSIFT [5]

of example images with specific graspable regions labeleghatres are capable of identifying fine details, including
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When applied tanaximally stable extremal regions (MSERs)each histogram are appended together into a single feature
SIFT features capture aspects of the gross shape of an objeettor. Lowe shows experimentally that a descriptor of thng
or its parts [3]. 128 gives the best performance for feature matching. This
For each type of grasp to be recognized, each training datarresponds td x4 patches and 8 bins in each patch. In order
set image is labeled with one or mayeasp regionsat which  to reduce the effect of illumination changes, the descripto
the corresponding grasp could be applied. We first traimector is normalized to unit length.
a model that classifies SIFT feature vectors as to whether2) MSER-SIFT: This approach uses an affine invariant
they are expected to fall within this grasp region. For &hape descriptor for MSERs. A set of binary images can
novel image, the classifier labels each candidate feature la¢ generated by applying different thresholds to the oailgin
a positive or negative example of the grasp region. Positivgnage. The set of extremal regions are the connected black or
features “vote” for the region of the image in which theywnhite regions in these binary images, and MSERs correspond
are found. SIFT features derived from the original imageo the regions that are stable across a set of thresholdseThe
and from a MSER capture fundamentally different imag®&/SERs are used to define SIFT keypoints. Instead of using
properties. If there exists a pixel with a large enough numbeyrey-scale images to calculate feature vectors as in SIFT,
of votes from both types of features, then the image IMSER-SIFT uses the binary MSER itself to calculate the
considered to afford the grasp and the location of the pixeIFT descriptors. Since MSERs usually capture the shape

is identified as the best grasp point. information of an image patch, the SIFT features calculated
on these regions depend more on the shape of the patch rather
A. Visual Features than its texture. The detailed implementation is descried

In this section, we briefly outline the SIFT and MSER-Fors&n and Lowe [3].
SIFT! approaches to describing image appearance.
1) SIFT: Keypoint detection. The goal for keypoint B. Feature Vector Classification
detection is to detect the locations in a given image that are ) )
robustly identifiable in other images of similar perspezsiv "€ next problem is to classify a feature vector as to
of the same or similar objects. Specifically, SIFT aims tdVnether it comes from a region corresponding to a partic-

identify keypoints that are repeatable when scaling and ittlar grasp type. We use a support vector machine (SVM)

image rotation exist. First, scale space images are generafassifier [11] to solve this problem. Given two sets of n-

from the original image. Then, the Difference of Gaussiaf/imensional vectorsi(= 128 in our case), a SVM classifier
(DOG) responses are computed from the two nearby scal@d€MPpts to construct a hyperplane that optimally separate
in this scale space. These DOGs respond highest to ardd§ Positive examples from the negative ones by giving the
of high contrast (dark surrounded by bright, or vice-versagmallest classification error. In practice, we adjust thiatie

The most stable locations are identified by the spatial arfféighting between the positive and negative classes based o
scale extrema in the DOG images. These stable locations 4% number of samples in each class. By using a polynomial

termed “keypoints” by Lowe [5]. The gradient (orientation)kemel of degree k (Iarger. than _1), the .SVM plassifier wiII_
of a pixel in an image is defined as the direction in whici$€arch for a hyperplane in a higher dimensional space in
which the feature vector describes all possible combinatio

the image intensity changes most quickly. A canonical ori e
entation is assigned to each keypoint by using the dominafit k-degree products of the original 128 feature elements.

orientation of pixels within a surrounding region. In order While the discrimination power is dramatically increased,
achieve rotation invariance, the orientation of the sunting "€ computational complexity is not significantly incregse
features are relativized to this canonical orientation. by using akernel trick[11], which allows the computations

SIFT descriptors. Each keypoint corresponds to a 2D'© remain in the original 128-dimensional space.
location in a given image, which itself can be considered
as defining the origin of a 2D coordinate frame, whos€. Identifying the Grasp Region
orientation and scale are determined by the canonical ori- In practice. individual positive kevboint feature vectoss
entation and scale of the keypoint. The keypoint descrithDr P ! POS yp . -
. : .pe located in many locations across an image containing
is a vector that represents the appearance of this patct, Fir

a patch is divided into subregions, and for each subregioﬁn object. However, a larger number of positive features

a histogram of local orientations is computed. Each bin o?re typically found in image areas that contain the target

this histogram counts the number of pixels with gradientlgnor;%e?raa\/\;e bC OT;':e aevr;?)ir-lczr;rrz:lrii" Z?Tsigg/ic;sfggt%ﬁ_s
in a particular range of orientations. In practice, a shift b ge by 9 P P

an individual pixel in either direction does not substdhtia ing approach [12]' Fef_:\tures that are reco_gmzed as posmve
Iglote for surrounding pixels using a Gaussian-shaped voting

function. The width of this function is proportional to the
feature’s scale. Also, the overall strength of the vote of an
individual feature is scaled by the degree to which it magche

informally, we use MSER-SIFT or MSER feature to denote thepsha the EXpeCted scale. ) ) . .
descriptor computed on a MSER using SIFT. More formally, we define the voting function for a partic-

less sensitive to variations in registration of the pataatmn
during the matching process. Finally, the values of all iims



ular grasp type at locatior in an image as:

Vi(z) = Z Wi(z), @

whereN,, is the total number of positive features anid(x)
is a Gaussian-shaped weighting function for each positive
featurei. We define the weighting function for featuieas: ‘D

Wi(z) = aze 2%, @)

Fig. 1. The set of objects used in our experiments. The reatangegion(s)
) ) ) ) in each image corresponds to the grasp region, which is manselibcted.
where = denotes an arbitrary location in the image;

denotes the location of positive features; determines the
width and «; determines the magnitude. Specifically, we I1l. EXPERIMENTAL RESULTS

define: For the purposes of examining the behavior of our algo-

o? = f3s?, (3) rithm, we choose to focus on two grasps: a ball grasp from
the top of circular-shaped objects and a handle grasp for
wheres; denotes the scale of featureFor SIFT features, we mug-shaped objects. Based on this, we selected 18 objects
directly use the scale of the image in scale space; for MSERom the COIL-100 database [7], which includes all 9 mugs,
SIFT features, we use the mean of the major and minor axgscan-shaped objects (including all the soda cans) and 2
of the bounding ellipse3 = 0.5 is an empirically selected other objects (a ship and a car), as shown in Fig. 1. The
constant. The magnitude of (2) is determineddyy whose rectangular region(s) shown in each image corresponds to
value is highest if featuréhas a scale that is expected giverthe grasp regiorthat is manually selected by the author. This
the training set: grasp region is used in the training set for the purposes of
_eimip? labeling features as being positive or negative examples of
ap=e (4)  grasp region. In addition, this region is used in the eviduat
phase of our experiments. For each object, we use all 72

where 5; and s; are the standard deviation and the meaf,ages which correspond to all viewing angles surrounding
of the k£ positive features in the training set that have thgye object with 5 degree increments.

smallest Euclidean distance to featre We use VLFeat [14] to calculate SIFT features and MSER
keypoint locations. We use Fogssand Lowe’s algorithm [3]
D. Combining SIFT and MSER-SIFT Features to calculate MSER-SIFT descriptors. Given this relatively

a§mal| set of objects, we use leave-one-object-out cross-
. vglidation to evaluate the performance of our algorithme Th
appearance of a region. As a consequence, they can often_be L : :

features within a grasp region for a particular grasp are

“distracted” by surface textures. MSER-SIFT featuresvallo labeled as positive. otherwise thev are labeled as negative
our algorithm to focus more on the shape of objects rather P ' y 9

than textures. However, many fewer MSER-SIFT features, performance Effect of Feature Type

are typ|c_ally _found than SIFT features. Our apprc_)ach 'S For a selected testing object, we use the other 17 objects
to combine information from both sources of evidence,

e . . ~~to construct a model for each of the two grasp types. For
Specifically, we combine the values of the particle votin grasp yp

Zach grasp type, we train two separate classifiers: one for
functions of SIFT and MSER-SIFT features by a pixel-wisg; -+ gnd Ft)heyl?)tﬁgg for I\I/ISI\ENR—SIFI?I' features I\/:/e use a c-
multiplication: :

svc (support vector classifier) with a polynomial kernel of
degree 10 provided by the LIBSVM Matlab toolbox [1]. We
choose the relative cost weighting of the two classes to be
inversely proportional to the number of features in eacksla
as observed in the training set.

We consider an image as affording a particular grasp Examples of SIFT features identified in a test image
if some pixel accumulates enough votes. Specifically, iire shown in Fig. 2(a). The tail of each arrow denotes
max, Vi(z) > 0., then we assume that a grasp has beethe center (keypoint) and the length denotes the scale of
identified at locationz, where «+ € {SIFT, MSER, both each SIFT feature. Examples of MSER-SIFT features that
and 0, is a threshold. We select the threshold that giveare recognized as positive are shown in Fig. 2(c). Each
the Kolmogorov-Smirnoff distance between the true positivellipse denotes a MSER-SIFT feature, which is scaled based
rate (TPR = TP/(TP+FN); TP = true positives; FN = falseon the actual feature scale. The particle voting functions
negatives) and false positive rate (FPR = FP/(FP+TN); FP calculated from the SIFT and MSER features are shown in
false positives; TN = true negatives) of the training sef[133D in Fig. 2(b) and Fig. 2(d). The origin of these figures

In practice, SIFT features are very specific to the loc

Voot(z) = Vaier(x) x Vuser(x). )

E. Identifying a Grasp



identified correctly for a given image (a yes/no criteriohe
report the performance of a particular algorithm on a specifi
grasp using a single contingency table and summarize the
performance using the kappa statistic:

observed agreementchance agreement
R =
1 — chance agreement

(6)

The kappa statistic measures performance of the grasp-recog
nition models relative to the best strategy possible withou
any information.x < 0 is interpreted as performance being
no better than a fixed strategy; = 1 is interpreted as
having perfect performance. When a grasp type is correctly
identified (a true positive), the next question is whether
the predicted grasp location is within the correct region (a
precision criterion). We calculate the percentage of atrre
locations (PCL) for the true positive images only.

The contingency tables of the SIFT-only approach, MSER-
only approach and the combined approach for the handle
grasp are shown in Tables I-lll. For the handle grasp, the
SIFT-only feature approach performs poorly at recognizing
(c) Positive MSER features (d) The particle voting functiofViser negative examples (many false positives). Because SIFT
features are sensitive to fine details of texture, it is not
uncommon for a positive SIFT feature to be observed in a
negative image. The MSER-only feature approach correctly

128 128

004 recognizes many negative cases (true negatives). However,

003, the number of false negatives is also high. This is because

002) that MSER features depend more on the gross shape of an
" 4‘ object. The positive images in our testing set usually danta

B o > - a single large scale MSER feature enclosing the handle (such

“ PP as the one observed in Fig. 2(c)), which is rarely observed in
e the negative images without handles. The combined approach
(e) The particle voting functiofVsen takes advantages of both features and works even better on

Fig. 2. Predict grasp type and location in an image contaiaingug. The the negative (.Exam.p.les’ since only Igcations voted for bia bot
oridin.of the 3D coordinate system corresponds to the Iowﬁrdornér of features are identified as grasp points. Ho_wever, thIS. comes
the test image. at a cost of a larger number of false negatives than either of
the other two approaches. By comparing the performance of
these three approaches, we can see that the combined feature
corresponds to the lower left corner of the test image. We capproach has the highest Note that the combined feature
see that the locations of the peaks correspond to the losaticapproach has the lowest number of true positives. However,
of the positively classified keypoints. Note that the two Bmaof the images that it does correctly label as positive, ibals
MSER features in Fig. 2(c) are assigned nearly zero heighbrrectly identifies the grasp region in the largest prapart
in Fig. 2(d). This is due to the fact that the scales of thesas compared with the other approaches. This is seen in the
two features are very different from those of the most similahigher PCL for the combined approach.
features in the training set. The pixel-wise multiplicatiof For the top grasp, unlike the handle grasp, there are only
these two particle voting functions is shown in Fig. 2(e)two negative objects: the car and the ship. The labels for
By using this “and” operation, the MSER-SIFT votes filterall testing images are positive except for the images that
out the extraneous SIFT votes and the SIFT votes refine tikerrespond to these two objects. The corresponding results
locations that are supported by the MSER-SIFT votes. Ware shown in Tables IV-VI. The SIFT-only feature approach
select the peak in Fig. 2(e) as the predicted grasp locati@mply identifies all images as positive and performs eguall
as long as it is higher than the threshafigyh. to the chance agreemenk (= 0). This is due to the
We compare the grasp prediction performance of threembiguity of textures and a low threshold. However, the
algorithms: SIFT feature only, MSER feature only and thé®CL of SIFT-only approach is high. This is because that
combination of both features. SIFT-only and MSER-onlythe SIFT features are very discriminative and the positive
approaches only use votes of a single type of feafkg{or features usually aggregate in the correct grasp regions. In
Vuser), While the combined approach uses the product of theontrast, MSER-only feature approach correctly recognize
two (Vohotn). We use two criteria for performance evaluationmost of the negative images (114/144). This is because the
First, we evaluate whether a certain type of grasp can lgross shapes of the car and the ship are very different from



TABLE |
HANDLE GRASP PREDICTION RESULTSIFT

TABLE IV
TOP GRASP PREDICTION RESULTSIFT

x=0.0286 Actual k=0 Actual
PCL=63.89% P N Total PCL=82.99% P N Total
P 529 | 738 | 1267 P 1152 | 144 | 1296
Predicted N 1 28 29 Predicted N 0 0 0
Total | 530 | 766 | 1296 Total | 1152 | 144 | 1296
TABLE Il TABLE V

HANDLE GRASP PREDICTION RESULTMSER

TOP GRASP PREDICTION RESULTMSER

k=0.3231 Actual x=0.1171 Actual
PCL=66.14% P N Total PCL=72.30% P N Total
P 378 | 289 | 667 P 592 30 622
Predicted N 152 | 477 629 Predicted N 560 | 114 | 674
Total | 530 | 766 | 1296 Total | 1152 | 144 | 1296
TABLE Il TABLE VI

HANDLE GRASP PREDICTION RESULTBOTH

TOP GRASP PREDICTION RESULTBOTH

k=0.4975 Actual x=0.2259 Actual
PCL=96.06% P N Total PCL=90.63% P N Total
P 279 | 45 324 P 811 39 850
Predicted N 251 | 721 972 Predicted N 341 105 | 446
Total | 530 | 766 | 1296 Total | 1152 | 144 | 1296

the positive objects where a top grasp can be applied. Tldeviations are due to the two mugs with low image qualities
combined feature approach gives the highesind PCL. In in our data set (the second and the fourth mugs in the last row
this particular case, an algorithm that guesses all images ia Fig. 1). Also, top grasps overall have higher TPRs than
positive will perform well. Hence, there is very little room handle grasps. This is because that there are more positive
for improvement. This explains in part whiyappa for all —examples (the can-shaped objects) with top grasps in the
three approaches is low. training set, which helps our algorithm to learn a better
model. For both the handle grasp and the top grasp, there
B. Performance Effect of Training Set Size is a significant difference in TPR between 2 mugs and 8

In the second set of experiments, we are interested in tfieugs in the training setp(< 10~° for the handle grasp;
role that training set size plays in algorithm performancep < 0.03 for the top grasp, according to a paired bootstrap
We examine this issue by varying the number of mugs in thést).
training set while keeping the 9 non-mug objects constant. Likewise, the PCLs are shown in Fig. 4. Note that the
First, we fix the order of the 9 mugs randomly. Then, foffirst point of the blue curve is a mean of only 5 trials, given
each of the 9 mugs we selected, we add between 1 andl®&t grasps are only successfully identified for 5 of the 9
mugs to the training set according to this order. This givetest mugs. All the other points are means of 9 mugs. In
a training set size of 10 to 17. The 9th mug is used fothis figure, we can see that handle grasps have much smaller
testing. For the handle grasp, we expect the performance $tandard deviations and overall higher values than toggras
increase substantially as mugs are added to the training séhis is due to the fact that visual features corresponding to
since there are no positive examples in the constant part b&ndle grasps are usually more distinctive and reliable tha
the training set. However, for the top grasp, we only expedpp grasps. Both curves show little variation as a function
a small performance increase with a relatively high stgrtinof training set size. For both the handle grasp and the top
point, since most of the objects in the constant training s@rasp, there is no significant difference between 2 mugs and
are positive examples (the can-shaped objects) of the tbp b8 mugs in the training setp(< 0.3 for the handle grasp;
grasp. p < 0.8 for the top grasp, according to a paired bootstrap

For the handle grasp, the handle of a mug is visible in 1&st).
out of the 72 aspects on average; for the top grasp, all mug
images are positive examples since the top of a mug can IV. CONCLUSIONS AND FUTURE WORK
always be observed. Because the chance agreement is vern this paper, we propose an approach that visually
high in this case, the kappa statistic is degenerate. Tovexef identifies grasp types and locations from images of novel
we report the true positive rate (TPR) instead. objects. For a given image, visual features are classified

Fig. 3 shows the mean TPRs of 9 mugs as the numbbased on whether they correspond to a particular grasp
of mugs in the training set increases. In this figure, wéype. This classifier is trained using images with manually
can see that both handle grasp and top grasp performarabeled grasp regions. In a novel image, the evidence from
improve with increasing training set size. The large stashda multiple identified features is combined using a patrticle
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